Notebook LM (Creating Podcasts from Documents)
zyx
provides an experimental module, built for simulating conversations between 2 or more agents.
Generated Audio
This current implementation is only built for single documents. Multi-document indexing and vectorization is wip.
Quick Example - Podcast about the Large Language Monkeys Paper
from zyx import agents
import zyx
# Lets retrieve our document
# Large Language Monkeys: Scaling Inference Compute With Repeated Sampling
document = zyx.read("https://arxiv.org/pdf/2407.21787", output = str)
# Create the characters
john = agents.Character(
name = "John",
personality = "The main speaker of the podcast, very genuine and knowledgable.",
knowledge = document,
voice = "alloy" # Supports OpenAI TTS voices
)
jane = agents.Character(
name = "Jane",
personality = "The second speaker of the podcast, not very knowledgable, but very good at asking questions."
)
# Now lets create our conversation
agents.conversation(
"Generate a very intuitive and easy to follow podcast converastion about the Large Language Monkeys paper.",
characters = [john, jane],
generate_audio = True, # Generates audio for the conversation
audio_output_file = "podcast.mp3"
)
Breaking it Down
To start creating Notebook LM style podcast, we need to first retrieve the document we will be using as context. Lets utilize the zyx.read() function to retrieve the paper from arXiv.
Defining Characters
To create our podcast now, first we need to create our characters. We will be creating two characters, John and Jane. John will be the main speaker of the podcast, and Jane will be the second speaker.
from zyx import Character
john = Character(
name = "John",
personality = "The main speaker of the podcast, very genuine and knowledgable.",
knowledge = document
)
jane = Character(
name = "Jane",
personality = "The second speaker of the podcast, not very knowledgable, but very good at asking questions."
)
Generating The Conversation
Now we can create our conversation. We will be passing in the topic we want to discuss, and the characters we want to have in the conversation. The conversation function supports more than 2 characters, and can even support group conversations (adhering to the limitations of the LLM you are using). For this example we will be using the generate_audio
parameter to generate audio for the conversation.
from zyx import conversation
conversation(
"Generate a very intuitive and easy to follow podcast converastion about the Large Language Monkeys paper.",
characters = [john, jane],
generate_audio = True, # Generates audio for the conversation
audio_output_file = "podcast.mp3",
max_turns = 10 # Set this to any number you want
)
More examples will be added soon
API Reference
Generate a conversation between characters based on given instructions or a Document object, with optional validator.
Example
from zyx import Document
from zyx.resources.completions.agents.conversation import conversation, Character
doc = Document(content="The impact of AI on job markets", metadata={"type": "research_paper"})
result = conversation(
instructions=doc,
characters=[
Character(name="AI Researcher", personality="Optimistic about AI's potential", voice="nova"),
Character(name="Labor Economist", personality="Concerned about job displacement", voice="onyx"),
Character(name="Podcast Host", personality="Neutral moderator", voice="echo")
],
min_turns=10,
max_turns=15,
end_criteria="The podcast should conclude with final thoughts from both guests",
verbose=True,
generate_audio=True,
audio_output_file="ai_job_market_podcast.mp3"
)
print(result.messages)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
instructions
|
Union[str, Document]
|
The instructions or Document object for the conversation. |
required |
characters
|
List[Character]
|
List of characters participating in the conversation. |
required |
validator
|
Optional[Union[str, dict]]
|
Validation criteria for the conversation. |
None
|
min_turns
|
int
|
Minimum number of turns in the conversation. |
5
|
max_turns
|
int
|
Maximum number of turns in the conversation. |
20
|
end_criteria
|
Optional[str]
|
Criteria for ending the conversation naturally. |
None
|
model
|
str
|
The model to use for generation. |
'gpt-4o-mini'
|
api_key
|
Optional[str]
|
API key for the LLM service. |
None
|
base_url
|
Optional[str]
|
Base URL for the LLM service. |
None
|
temperature
|
float
|
Temperature for response generation. |
0.7
|
mode
|
InstructorMode
|
Mode for the instructor. |
'markdown_json_mode'
|
max_retries
|
int
|
Maximum number of retries for API calls. |
3
|
organization
|
Optional[str]
|
Organization for the LLM service. |
None
|
client
|
Optional[Literal['openai', 'litellm']]
|
Client to use for API calls. |
None
|
verbose
|
bool
|
Whether to log verbose output. |
False
|
generate_audio
|
bool
|
Whether to generate audio for the conversation. |
False
|
audio_model
|
OPENAI_TTS_MODELS
|
The model to use for text-to-speech conversion. |
'tts-1'
|
audio_output_file
|
Optional[str]
|
The output file for the full conversation audio. |
None
|
Returns:
Name | Type | Description |
---|---|---|
Conversation |
Conversation
|
The generated conversation. |
Source code in zyx/resources/completions/agents/conversation.py
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|